Senin, 13 Desember 2010

Gelombang

Gelombang Mekanik

Gelombang adalah gangguan yang merambat. Bentuk ideal dari suatu gelombang akan mengikuti gerak sinusoide. Selain radiasi elektromagnetik, dan mungkin radiasi gravitasional, yang bisa berjalan lewat vakum, gelombang juga dapat merambat pada medium (yang karena perubahan bentuk dapat menghasilkan gaya memulihkan yang lentur). Gelombang berjalan dapat memindahkan energi dari satu tempat kepada lain tanpa mengakibatkan partikel dari mediumnya berpindah secara permanen; yaitu tidak ada perpindahan secara masal. Bahkan, setiap titik khusus, hanya berosilasi di sekitar satu posisi tertentu.
Jenis Gelombang

Ditinjau dari arah getar (gangguan/usikan), gelombang dibedakan menjadi gelombang transversal dan gelombang longitudinal. Sedangkan ditinjau dari medium perambatannya, gelombang dibedakan menjadi gelombang mekanik dan gelombang elektromagnetik.
Gel. Transversal

Gelombang Transversal


Suatu gelombang dapat dikelompokkan menjadi gelombang trasnversal jika partikel-partikel mediumnya bergetar ke atas dan ke bawah dalam arah tegak lurus terhadap gerak gelombang. Contoh gelombang transversal adalah gelombang tali. Ketika kita menggerakan tali naik turun, tampak bahwa tali bergerak naik turun dalam arah tegak lurus dengan arah gerak gelombang. Bentuk gelombang transversal tampak seperti gambar di bawah.

Berdasarkan gambar di atas, tampak bahwa gelombang merambat ke kanan pada bidang horisontal, sedangkan arah getaran naik-turun pada bidang vertikal. Garis putus-putus yang digambarkan di tengah sepanjang arah rambat gelombang menyatakan posisi setimbang medium (misalnya tali atau air). Titik tertinggi gelombang disebut puncak sedangkan titik terendah disebut lembah. Amplitudo adalah ketinggian maksimum puncak atau kedalaman maksimum lembah, diukur dari posisi setimbang. Jarak dari dua titik yang sama dan berurutan pada gelombang disebut panjang gelombang (disebut lambda – huruf yunani). Panjang gelombang juga bisa juga dianggap sebagai jarak dari puncak ke puncak atau jarak dari lembah ke lembah.


Gelombang Longitudinal

Selain gelombang transversal, terdapat juga gelombang longitudinal. Jika pada gelombang transversal arah getaran medium tegak lurus arah rambatan, maka pada gelombang longitudinal, arah getaran medium sejajar dengan arah rambat gelombang. Jika dirimu bingung dengan penjelasan ini, bayangkanlah getaran sebuah pegas.

Salah satu contoh gelombang logitudinal adalah gelombang suara di udara. Udara sebagai medium perambatan gelombang suara, merapat dan meregang sepanjang arah rambat gelombang udara. Berbeda dengan gelombang air atau gelombang tali, gelombang bunyi tidak bisa kita lihat menggunakan mata. Dirimu suka denger musik khan ? nah, coba sentuh loudspeaker ketika dirimu sedang memutar lagu. Semakin besar volume lagu yang diputar, semakin keras loudspeaker bergetar. Kalau diperhatikan secara seksama, loudspeaker tersebut bergetar maju mundur. Dalam hal ini loudspeaker berfungsi sebagai sumber gelombang bunyi dan memancarkan gelombang bunyi (gelombang longitudinal) melalui medium udara. Mengenai gelombang bunyi selengkapnya akan dipelajari pada pokok bahasan tersendiri.

kita bisa menyimpulkan beberapa hal penting berkaitan dengan gelombang mekanik :

Pertama, gelombang merupakan getaran yang merambat dengan laju tertentu melalui medium tertentu. Medium yang dimaksudkan di sini bisa berupa tali, air, pegas, tanah dan sebagainya. Laju getaran yang merambat dikenal dengan julukan laju perambatan alias laju gelombang (v). Laju gelombang ditentukan oleh sifat-sifat medium yang dilalui oleh gelombang. Btw, jangan kacaukan laju gelombang dengan laju medium yang dilalui oleh gelombang.

Kedua, medium yang dilalui oleh gelombang hanya bergerak bolak balik pada posisi setimbangnya, medium tidak merambat seperti gelombang.

Ketiga, gelombang bisa terjadi jika suatu medium bergetar atau berosilasi. Suatu medium bisa bergetar atau berosilasi jika dilakukan usaha alias kerja pada medium tersebut. Dalam hal ini, ketika usaha atau kerja dilakukan pada suatu medium maka energi dipindahkan pada medium tersebut. Nah, ketika getaran merambat (getaran yang merambat disebut gelombang), energi dipindahkan dari suatu tempat ke tempat lain melalui medium tersebut. Gelombang tidak memindahkan materi atau medium yang dilaluinya, gelombang hanya memindahkan energi… perhatikan bahwa pembahasan kita sebelumnya berkaitan dengan gelombang mekanik. Karenanya jika disebutkan gelombang maka yang saya maksudkan adalah gelombang mekanik.

Gelombang Stasioner

Gelombang stasioner adalah gelombang yang amplitudonya berubah terhadap posisi. Gelombang tersebut dapat terbentuk dari perpaduan atau superposisi dua gelombang yang memiliki amplitudo, panjang gelombang dan frekuensi yang sama, tetapi arahnya berlawanan.

Pada ilustrasi grafis gelombang stasioner diatas, partikel-partikel yang dilalui gelombang bergetar naik turun dengan amplitudo berbeda, bergantung pada posisinya. Titik-titik yang mempunyai amplitudo maksimum disebut perut (P) dan titik-titik yang mempunyai amplitudo minimum (nol) disebut simpul (S).

Gejala-Gejala Gelombang

1. Difraksi
Difraksi gelombang adalah peristiwa pembelokan gelombang ketika melewati celah sempit atau penghalang.
contoh difraksi dalam kehidupan sehari-hari
Difraksi dialami oleh setiap gelombang baik gelombang mekanik (misalnya gelombang air, gelombang bunyi) maupun gelombang elektromagnetik (misalnya gelombang cahaya). Btw, pembahasan kita kali ini masuk dalam pokok bahasan gelombang mekanik sehingga hanya dijelaskan difraksi yang dialami oleh gelombang mekanik. Mengenai difraksi yang dialami oleh gelombang elektromagnetik akan dibahas kemudian.

2. Interferensi
Interferensi gelombang adalah perpaduan atau superposisi gelombang ketika dua gelombang atau lebih tiba di tempat yang sama pada saat yang sama. Interferensi dua gelombang dapat menghasilkan gelombang yang amplitudonya saling menguatkan (interferensi maksimum) dan dapat juga menghasilkan gelombang yang amplitudonya saling melemahkan (interferensi minimum).

Prinsip Superposisi

Dari penjelasan sebelumnya bisa dikatakan bahwa amplitudo alias simpangan dari perpaduan dua puncak gelombang atau perpaduan dua lembah gelombang atau perpaduan satu puncak dan satu lembah gelombang sama dengan penjumlahan aljabar dari amplitudo masing-masing puncak gelombang atau lembah gelombang secara terpisah (puncak gelombang dianggap positif sedangkan lembah gelombang dianggap negatif). Hal ini dikenal dengan julukan prinsip superposisi.

Prinsip superposisi juga bisa dijelaskan dengan cara yang berbeda. Untuk mempermudah pemahamanmu, saya menggunakan contoh gelombang transversal yang merambat melalui tali. Kita andaikan dua puncak gelombang transversal saling mendekati, sebagaimana ditunjukkan pada gambar di bawah. Perhatikan bahwa ketika kedua puncak gelombang merambat sepanjang tali, setiap titik atau setiap bagian tali yang dilaluinya mengalami perpindahan pada arah vertikal. Nah, apabila kedua puncak gelombang bertemu dan bertumpang tindih, maka perpindahan total yang dialami oleh bagian tali yang dilalui kedua puncak gelombang bisa diketahui dengan menjumlahkan perpindahan yang dialami oleh bagian tali tersebut seandainya hanya puncak gelombang pertama saja yang melaluinya dan perpindahan yang dialami oleh bagian tali tersebut seandainya hanya puncak gelombang kedua saja yang melaluinya.

Perpindahan merupakan besaran vektor sehingga penjumlahannya dilakukan secara vektor. Dalam hal ini kita juga perlu memperhatikan arah perpindahan. Perpindahan yang terjadi di sebelah atas posisi keseimbangan (posisi keseimbangan bisa dianggap sebagai sumbu x) bernilai positif, sedangkan perpindahan yang terjadi di sebelah bawah posisi keseimbangan bernilai negatif.

Interferensi

Sebelumnya sudah dijelaskan mengenai prinsip superposisi, kali ini kita berkenalan dengan interferensi. Interferensi sebenarnya istilah yang digunakan untuk menjelaskan apa yang terjadi ketika dua atau lebih gelombang saling bertumpang tindih. Kita juga bisa mengatakan bahwa interferensi merupakan superposisi dari dua atau lebih gelombang.

Sesuai dengan penjelasannya sebelumnya, jika dua atau lebih puncak gelombang saling mendekati dan bertumpang dindih maka amplitudo total dari perpaduan dua atau lebih puncak gelombang tersebut menjadi lebih besar, dibandingkan dengan amplitudo masing-masing puncak gelombang. Hal yang sama terjadi ketika dua lembah gelombang saling mendekati dan bertumpang tindih…. Nah, peristiwa seperti ini dikenal dengan julukan interferensi konstruktif. Konstruktif artinya bersifat membangun… perhatikan gambar di bawah.

Selain interferensi konstruktif, ada juga interferensi destruktif. Destruktif artinya bersifat menghancurkan atau merusak. Interferensi destruktif terjadi ketika amplitudo alias simpangan total dari perpaduan dua atau lebih gelombang menjadi lebih kecil, dibandingkan dengan amplitudo masing-masing gelombang tersebut. Interferensi destruktif juga bisa terjadi ketika amplitudo total dari perpaduan dua atau lebih gelombang sama dengan nol. Dalam hal ini gelombang total tidak punya amplitudo (bisa terjadi ketika puncak gelombang dan lembah gelombang memiliki amplitudo yang sama). Tataplah gambar di bawah…

Gambar di bawah menunjukkan peristiwa interferensi konstruktif yang terjadi ketika dua gelombang saling bertumpeng tindih ;) alias bersuperposisi. Kedua gelombang yang bersuperposisi memiliki frekuensi dan amplitudo yang sama. Kedua gelombang juga memiliki fase yang sama. Gelombang total alias gelombang resultan (A + B) yang dihasilkan memiliki amplitudo sebesar 2x amplitudo masing-masing gelombang yang bersuperposisi, sedangkan frekuensi dan fasenya sama dengan kedua gelombang yang bersuperposisi (A dan B).

Gambar di bawah menunjukkan peristiwa interferensi konstruktif sebagian yang terjadi ketika dua gelombang saling bersuperposisi. Kedua gelombang yang saling bersuperposisi memiliki frekuensi dan amplitudo yang sama, btw kedua gelombang tidak memiliki fase yang sama. Karena fasenyanya berbeda maka gelombang total alias gelombang resultan (A + B) yang dihasilkan memiliki amplitudo hampir dua kali amplitudo masing-masing gelombang yang bersuperposisi. Frekuensi gelombang total sama dengan frekuensi kedua gelombang yang bersuperposisi.

Gambar di bawah menunjukkan peristiwa interferensi destruktif yang terjadi ketika dua gelombang saling bertumpeng tindih ;) Kedua gelombang yang bersuperposisi memiliki frekuensi dan amplitudo yang sama. Kedua gelombang tidak memiliki fase yang sama (berbeda fase sebesar 180o). Kedua gelombang saling melenyapkan…

Gambar di bawah menunjukkan peristiwa interferensi destruktif sebagian yang terjadi ketika dua gelombang saling bertumpeng tindih ;) Kedua gelombang yang bersuperposisi memiliki frekuensi dan amplitudo yang sama. Kedua gelombang tidak memiliki fase yang sama (berbeda fase hampir sebesar 180o). Amplitudo gelombang total yang dihasilkan hampir nol. Frekuensi gelombang total sama dengan frekuensi kedua gelombang yang bersuperposisi.

Gelombang-gelombang yang bersuperposisi merupakan gelombang harmonik sederhana yang memiliki frekuensi dan kelajuan yang sama. Kok kelajuannya bisa sama ? tau dari manakah ? Gelombang-gelombang tersebut bisa bersuperposisi jika mereka melewati medium yang sama pada waktu yang sama. Nah, kelajuan gelombang (maksudnya gelombang mekanik) ditentukan oleh medium yang dilaluinya. Karena medium yang dilaluinya sama maka kelajuan gelombang sendirinya pasti sama. Kok frekuensi dari gelombang harmonik yang saling tumpeng tindih juga sama ? tahu dari manakah ? guampang.. ingat saja hubungan antara kelajuan, frekuensi dan panjang gelombang yang dinyatakan dalam persamaan alias rumus v = (f)(lambda). Karena laju (v) kedua gelombang yang bersuperposisi sama, demikian juga panjang gelombang (lambda) kedua gelombang yang bersuperposisi sama maka frekuensinya tentu saja sama.

Dari contoh di atas tampak bahwa gelombang total alias gelombang resultan yang dihasilkan oleh superposisi dua (atau lebih) gelombang harmonik sederhana, masih berupa gelombang harmonik sederhana. Gelombang total yang dihasilkan masih berupa gelombang harmonik sederhana karena setiap gelombang harmonik sederhana yang bersuperposisi memiliki frekuensi yang sama. Apabila setiap gelombang hrmonik sederhana yang bersuperposisi memiliki frekuensi yang berbeda maka gelombang total alias gelombang resultan yang dihasilkan tidak lagi berupa gelombang harmonik sederhana tetapi berubah menjadi gelombang kompleks.

3. Refraksi
Pembiasan gelombang (refraksi) adalah pembelokan arah muka gelombang ketika masuk dari satu medium ke medium lainnya. Adakalanya pembiasan dan pemantulan terjadi secara bersamaan. Ketika gelombang datang mengenai medium lain, sebagian gelombang akan dipantulkan dan sebagian lainnya akan diteruskan atau dibiaskan. Refraksi terjadi karena gelombang memiliki kelajuan berbeda pada medium yang berbeda.

4. Refleksi
Pada peristiwa pemantulan gelombang akan berlaku hukum pemantulan gelombang yaitu sudut pantul sama dengan sudut datang. Artinya, ketika berkas gelombang datang membentuk sudut θ terhadap garis normal (garis yang tegak lurus permukaan pantul), maka berkas yang dipantulkan akan membentuk sudut θ terhadap garis normal.
Pemantulan gelombang biasanya terjadi ketika gelombang yang sedang bergentayangan dari satu tempat ke tempat lain menabrak suatu penghalang. Dirimu mungkin pernah melihat gelombang air laut yang terpantul dari sisi kapal atau batu karang; gelombang air yang terpantul dari sisi kolam renang atau bak penampung. Masih sangat banyak contoh pemantulan gelombang yang bisa kita temui dalam kehidupan sehari… sisanya dipikirkan sendiri ya :( oya, dirimu mungkin pernah mendengar pantulan suara sendiri ketika berteriak histeris di tengah hutan ? hiks2.. piss… tumben neh maen ke hutan sendiri ;) Pantulan suara atau istilah kerennya “gema” juga merupakan salah satu contoh peristiwa pemantulan gelombang. Bedanya gema merupakan peristiwa pemantulan gelombang bunyi. Gelombang bunyi termasuk gelombang longitudinal, sedangkan gelombang air merupakan gabungan dari gelombang transversal dan longitudinal.

Perlu diketahui bahwa pemantulan gelombang tidak hanya terjadi ketika gelombang menabrak penghalang. Pemantulan gelombang juga bisa terjadi ketika gelombang tiba di ujung medium yang dilaluinya. Mengenai hal ini akan kita bahas kemudian…

Terlebih dahulu kita kupas tuntas pemantulan yang dialami oleh gelombang satu dimensi. Contoh gelombang satu dimensi adalah gelombang transversal yang merambat melalui tali, dawai dan sejenisnya. Selanjutnya kita akan meninjau pemantulan gelombang dua dimensi atau gelombang tiga dimensi. Riak air termasuk gelombang dua dimensi. Sedangkan gelombang bunyi dan gelombang elektromagnetik termasuk gelombang tiga dimensi. Btw, kali ini kita tidak membahas gelombang elektromagnetik, tunggu tanggal mainnya…

Pemantulan gelombang satu dimensi

Untuk membuktikan bahwa gelombang dipantulkan ketika menabrak penghalang, anda bisa melakukan percobaan kecil2an berikut. Sediakan seutas tali… talinya tidak perlu terlalu panjang. Nah, silahkan ikat salah satu ujung tali pada sebuah tiang.. Nah, dirimu pegang ujung tali yang lainnya. Selanjutnya silahkan sentakan ujung tali tersebut. Setelah ujung tali disentakkan, akan timbul pulsa gelombang yang merambat sepanjang tali tersebut

Tidak ada komentar:

Posting Komentar